AD=AO62 462

UNCLASSIFIED

MASSACHUSETTS UNIV AMMERST
HARDWARE ENHANCEMENT OF OPERATING SYSTEMS, (V)
NOV 78 C C FOSTER

ARO-14230.1-EL

F/6 12/2
DAAG29=-T76=6-0335

.

-

COPY

g o

-

o W

0C FiLe

ADAD62462

S

: (. h — rail
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) A 0 /de' / [L

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. 30VT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

None

85 TYPE OF REPORT & PERIOD COVERED
Sept. 23, 1976
Final gept, 23, 1978

\
——\q

TITLE (and Subtitle)
t? Hardware Enhancement of Operating Systems-

6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(s) \ U 8. CONTRACT OR GRANT Nunjlu(.)
(033

kJCaxton € /Foster DAAG 29-76-G-883e <

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :ROGR‘AM ELEMENT, PROJECT, TASK

UNIT NUMBERS

University of Massachusetts g /J f? [/
1. CONTROLLING OFFICE NAME AND ADDRESS / / {12, REPORT DAT&-
U. 5. Army Research Office /3 Novidady 1978
. Post Office Box 12211 ~ 73 NUWBER OF PAGES
Resenrch Triangle Park, NC ’(MQ
T4, MONITORING AGENCY NAME & ADRES dll_fcr trol 1S. SECURITY CLASS. (of this report)
Same ,= Unclassified
Sa. DECLASSIFICATION/DOWNGRADING
, SCHEDULE -

16. DISTRIBUTION STATEMENT (of this Keport) “ - ey

,\QF‘IIYK {—:Pt' TJZ \;;J" ’/é" .l__; *_J{)!:./‘ /<

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, !! different from Report)

{/7f/V<_Lz#)/ e P - P 3ES

8 supPLeug.nrAnv ~OTES(, “M{:’:/, jl/w\\z‘ﬁ 1 E/

findings in this report are WOl to e construed as an official

Department. of the Army position, unless so designated by other authorized
documents.

™h
ine

19. KEY WORDS (Continue on reverse aide Il necessary and identify by block number)

Operating Systems, Hardware enhancement, Content Addressable memories.

\

JO,NZYRAC? (Continue on reverse side If neceseary and identify by block number)

his study investigated what hardwage could be added to a conventional
computer in order to speed up the execution, decrease the complexity
and improve the reliability of an operating system. It was found that
content addressable memories would be useful for four aspects of a
system: ready queue, clock wake up queue, I/0 device control and
resource access control. A preliminary design for CAM hardware is

included.
DD , :2:“"]47?&7'0" OF | NOV 65 |S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
AXJ RID

‘;hlﬂimsicﬁgdj:; Aj_lgj

2
/B

. re
b Y

i "

Hardware Enhancement of Operating Systems

Final Report

Caxton C. Foster

November 23, 1978

U. S. ARMY RESEARCH OFFICE

CONTRACT / GRANT NUMBER
DAAG 29-76-G-0335

UNIVERSITY OF MASSACHUSETTS
Amherst, MA 01003

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

P— —

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS.

ACCESSION
| ACCESS

s B e N

o SR

e,

Introduction

During the past two years we have looked at several ways of improving
the performance of an operating system. We have concentrated on improvements
that might be brought about by means of additional hardware. Further we have
concentrated on small dedicated systems that must respond rapidly to their
environment. These are often called real time systems.

Academic types concentrate their academic type research on two aspects
of operating systems. These are loosely described as traffic control
(semaphores) and as queuing theory. In the real world neither of these has
a great deal of bearing on whether an operating system runs rapidly or slowly.
To be sure one can eat up a great deal of time by larding a system with
complicated interlocks. 1In the final analysis a great fraction of these
semaphores can be eliminated by proper design of the system. One does need
to worry about passing messages from one sub program to another and one
does need to worry about possible race conditions but both of these can be
handled efficiently, tidely and with considerable dispatch by a monitor.

Queueing theory tells one, after a great deal of mathmatical manipula-
tion, that things are going to pile up where bottle necks exist. It can
tell you how bad it is likely to get but since one must allow for the worst
case in any event this is if only passing interest.

Our conclusions can be stated succinctly. One: supply a good mechanism
for holding the queues of processes waiting for resources. Two: provide
enough resources so that very few processes are walting on queues.

Let me come straight to the point. The best hardware enhancement for
an operating system that you can buy is more main storage: The reason this
is true is very simp.e. If there is sufficient main storage available you

do not need to complicate your system by providing virtual storage. If every-

- s R P i & W - e 2 & AOIPR, . W0y e N 0

e

B

body is in mainstore all the time, then there is no "unoverlapped swapping
time" at all. The control structure is simpler, the operating systems is
more reliable and it takes up less of the system's time and resources.

The next best way to spend money on hardware is to buy some content
addressable memory to use for storing system queues. This will allow us to
post a request for service in one machine cycle and to return the highest
priority request-for-service in one cycle. It is hard to imagine how this
speed might be improved. It is also hard to imagine how an operating system
could get along without having a queueing mechanism of some kind. There
are other places to spend money, some of them profitable. One can provide
sophisticated memory and I/0 device protection hardware. With content
addressable memories protection can be provided in a very flexible way
that permits each user to have his own access map to storage independent
of all other users. Hardware registers to permit renaming blocks of storage,
as is done in a virtual memory, turns out to save a lot of moving of infor-
mation or else waste of space due to external fragmentation. Other than these

we found no place that hardware would be significant help to an operating

system.

a3 y A TIL i o TP o ‘vli o o

e

A

A Small Real Time Operating System Using CAMS

In order to focus our efforts, we decided to concentrate on a dedicated
real time system such as might be found in many mini-computer applications.

We assumea system with a limited number of jobs to do. These jobs are
known at system generation time. Because this is a real time system, response
to external stimuli must be rapid and we must select at any instant the highest
priority job ready to run and give that job what it needs to accomplish its
purposes. This implies that each job will have a priority that may vary
depending on the part of the job being carried out and may vary depending
on the imminence of that job's deadline. It further implies that we must be
prepared to preempt a job when another one of higher priority becomes unblocked.
There will be jobs in the system that may sleep for a long while waiting for
an external event but that require high priority service once that event occurs.
Other jobs will be awakened periodically so that they may study the state of
the world and react appropriately. Still other jobs, such as diagnostic

routines, will run only if there is nothing else to do.
Motivation

Brown, et al. (1) identified 15 "system primitives" for an operating
system of this type. Furthermore, they picked two, namely queue manipulation
and message passing, as especially time critical. Their model showed that if
they could reduce the nucleus service time by 70% they could expect a decrease
in response time of 25% (2). They were hesitant to claim that the movement of
these two primitives to firmware would accomplish this 707% reduction in over-
all nucleus service time.

An examination of M.M.S. (A Modest Multiprogrammed System, Eckhouse (3))

showed a service time of 240-295 microseconds (on a PDP-11). This system has

i r—

only one service call, '"queue,"

which takes the running task, puts it on the
ready list and takes the next highest priority ready task and makes it active.
This system has no interprocess communication. In addition, MMS has only four
levels of priority each on a separate queue so that the Enqueue operations can
be done relatively quickly.

Statistics from other operating systems (Foster (4) and Bateson (5)) give
a range of "Length of Execution'" of system routines (tasks) of 50-200 with a
median of arcund 100 instructions executed between service calls. With an
average instruction time for a PDP-11 (on which MMS was written) of 4 usec,
this implies 407% of the CPU time is spent in the operating system nucleus.
This agrees well with Brown's 37% estimate,

We believe we can cut down service times for this type of system to
80-100 microseconds for two reasons. First, all Queuing and Dequeuing
operations will be done using Content Addressable Memories (CAMS). These
will be special purpose hardware that will perform operations on data. Our
estimates show that these will interface with the PDP-11 as a 1 microsecond
memory and not slow down the execution of instructions.

Second, all other primitives (i.e., block, unblock, "P" and "V" on
resources and semaphore, etc.) will also be done using these same CAMS

so we expect a similar speed increase for all functions of the system.
An Overview of the Operating System

In order to understand the following discussion it is important to
understand the concepts of the Job and Task. A task is a small unit of
processing; it is typically "request an I1/0 device," "use an I/0 device,"
or "request a page of memory." Each job consists of a list of tasks to be

performed much as a program consists of a list of instructions. Serving as

BTSN SR SRS IR e RSO

a pseudo program counter we have a "job pointer" for each job which points to
the next task to be executed. When a task is finished we "advance'" the job
pointer of this job. The job pointer now points to a new task to be performed
for this job. But since there are many jobs competing for the use of the
CPU we cannot just plunge ahead and start this new task. Instead, we post
a "request" on the ready queue. This request says which job wants what task
and at what priority. When this request has been posted the system then scans
the ready queue and selects the request with the highest priority and executes
that. The task selected may belong to the previous job or to another.

Tasks which use resources should be proceeded by tasks which request the
assignment of the resource (P) and followed by tasks which release the resource

(V). Details may be seen in Figure 1. It should be remembered that all jobs,

and tasks, are specified at system generation time. Each task within a job will

have its own priority associated with it. There can be several "calls" of a
task in the same job (at different points) and in several jobs. We make the
stipulation that there will only be one task per job that is active in the
system at any one time. By active we mean on the ready list or running. This
simplifies the saving of context when a task is interrupted. We allow looping
of tasks in a job to accomplish chores such as outputting multiple lines to a
line printer.

The ready list or ready queue is kept on one of the four system CAMs.
It is a list of tasks with their associated priorities and the number of
the job for which they are running. There is also a "status'" bit called
busy/idle. We make this bit a one if this task is idle. This bit is just
above the high order bit of the "priority" field. Thus all idle tasks have

a higher "priority" than any husy tasks. This busy/idle bit will be used

primarily for tasks that request resources.

——— .

PSS FE LS i 2 et Tl g M SRR

-—

B RV DN NP —

\/

S

Seleer Widhes)
Prioy ‘\'~(

Needy Task

=

EAec o Tan

-

(Rerrram——"S

|
—

Advanca Jek
Po] v{\"-"

7

\ ‘.)_,) P,

YkS Aegovete

Td\e
[

A 1
5;_5{ \\ 3\«.*
Qe¢'ac *‘,
Rj_\ 1\‘05 T‘.t K

Give Nesourte
<o Tws i

?u* Tk‘b\’\
B adl on R’A’

[]

Akav\ (£ 3

Y

+

EXLL\;\'&
Task

A) yan (€

XES

{'ob‘v(g i'.

R s e

———

-~
('—Al-l.v* B "\k C(}»—‘* ’\"Q\ YRR
%) Tut e | -~ ™ol)n\ o ¥

2N

Main Program
The flow of the "main program" or job scheduler (see Figure 1) is this:
do forever
Begin
Current-task:= Highest-priority - of (Ready-list);*
If Task-type (Current-task) = Request - resource

then begin
If Is - busy (Resource-Requested by (Current - task))
Task -~ status (Current - task) := Busy;
Put - on - ready - list (Current-task) ;*
end
else begin {resource is Idle}
Disable - interrupts;
Current - resource:= Resource - requested - by (Current - task);
for all Tasks where Resource - requested - by (Task) = Current - resource
do Task - status (Task):= Busy;#
Update - I0 - CAM (Current - tack, Current - resource);
Resource - status (Current - resource) := Busy;
Enable - interrupts;
Advance (Current - task);
end
else begin {Not a request resource task}
Execute (Current - task);
if not (Task - type (Current - task) = Resource - use or
Task - type (Current - task) = Clock - wake-up)
then Advance (Current - task);
end

end

*These are 'primitive'" CAM operations as explained later.

Each resource has two words associated with 1t: one is the "resource use
flag," and one, called "old," is the task and job number of the current user.
The execution of a resource use task is:

1. copy the "current " task and job number into "old"

2. set up the I/0 conditions (i.e., give a start to the paper tape reader)

3. return to the maiua ioop.

It is assumed that the I/0 interface is "smart' enough to generate an interrupt
if a sufficient time period has elapsed to justify a time out.

When an interrupt occurs indicating that the I/0 is completed, we put the
task that was interrupted (called "current") on the ready list as an idle tacsk.
Then we do an advance for the "old" task which was waiting for the interrupt.
This allows for preemption, since the previously running job (current) and the
job which just had an I/0 completion (old) from an interrupt can "fight it out"
based on their priorities to see which will be taken from the ready list next.
For example, a job which just had a task return from a disk interrupt would
normally follow that task (on the job list) with a high priority task to use
the disk again or release it (with a V task). We would want this to be done
before we would want a low priority task (that was running) to finish. We do
not want a 'valuable" resource like the disk to sit unused with its use flag
set busy.

A typical resource release task (or "V'") would perform the following:

1. make resource idle

2. make all other tasks on the ready list that are requesting this
resource idle (competitors)

3. update the memory protect or I/0 protect CAM to show that the resource
is no longer owned by this job

4. return to main loop.

Content Addressable Memories (CAM)

Of the four system CAM's two will be used for queuing operations; these
are the Ready List and the Clock Wake Up List. Each '"queuing CAM" consists of
a mico-programmed control register, a data register, a comparand register, and
a number of data cells each 24 bits in width. The number of data cells will
depend on the application. Each cell is divided into four fields A, B, C, D of
1, 7, 8, 8 bits respectively. See Figure 2.
Each 8 bit instruction to the CAM control word is decoded and the
appropriate action is taken on the data cells, comparand, and data register.
Instructions to the CAM control word are:
1. Find Greatest
Find the cell with the largest number in the A and B fields (Busy/Idle
and Priority) and return the C and D fields of that cell (Task and Job number).
2. Make Tasks Busy
| Find all cells that match the C field of the comparand and write a zero
in their A field.
3. Make Taks Idle
Find all cells that match the C field of the comparand and write a one
in their A field.
4. Clear Entry
L ! Find the cell that matches the C and D fields of the comparand and write
|
[a zero in the D field (there is no job number zero).
5. Make Entry
Write fields A, B, C, D into the (first) cell that has field D set to
zero. (If none, this will cause an interrupt.)
6. Exact Match On Time
Find the (first) cell that matches the A, B, C fields of the comparand

and return the D field of the cell. (If none return zero.)

10

Figure 2

A B

1 7

Field For Ready List For Clock List
A Busy/ldle
B Priority 16 bit time
C Task #
D Job # Job #

o

11

Four Uses for CAM's in an Operating System

We have found four places within a conventional operating system that
would profit from the use of CAM's such as we described above. There may be
more but these four are obvious. If once a machine was built with some CAM's
in it, we believe that more ways to use them would be discovered very shortly.
The four places we have investigated are:

job-task request list

clock wake up list

memory access control

1/0 device access control

We will now discuss these applications in turn and explain some of the

reasoning behind our choices of parameters.

Job-Task Request List
As outlined above, each job has a task it wishes to perform. The
collection of these task requests is called the '"ready queue." This task

might be "waking up" at a certain time or waiting for an external event or
computing a square root. Associated with each task entry on a JOBLIST, we
have a word describing the priority at which that task needs to be run for
this job. Because the PDP-11 has 8 bit Byte instructions, we have elected
to make our CAMs a multiple 8 bits, namely 24 bits, wide. We have allowed:

8 bits for 256 different jobs

8 bits for 256 different tasks

7 bits for 12§ different priority levels

1 bit for Busy or Idle

In a straight conventional computer, it would be necessary to either

keep the "ready queue" sorted by priority, search the queue for the highest

priority task each time we wish to dispatch a task or have 128 separate queues.

12

An additional complication for a conventional machine is the status (busy

or idle) of a task. The usual way to handle this 1s to provide a "blocked"
queue for task requests that are waiting for 'busy devices.'" When a device
falls idle a conventional operating system must search the blocked queue for
the highest priority request waiting for this device and transfer that request
to the ready queue where it then competes with all other ready requests for
the CPU. If an interrupt occurs which triggers off a high priority request
for a device, caution must be exercised to ensure that not more than one
request for a possibly busy device appears on the ready list.

The use of a CAM in this place greatly simplifies the situation. When a
request for the execution of task is generated (by the execution of the ADVANCE
routine), we insert a task request in the CAM with the job number, task number
and priority as determined by ADVANCE. We set the status bit of the request
to 0 or 1 depending on whether the task is known to be idle or busy. Since
both the blocked and the ready queues are in one CAM, there will be no need
to move entries between them.

When we are ready to dispatch a new task, we search (in about one micro-
second) the entire CAM for the request for an idle task which has the highest
priority level. This task is the one to be dispatched and the request for this
task is removed from the CAM. If this task involves a possibly busy device
(for example, a line printer) when the device goes busy part of the code for
the task will access the CAM and set all requests for this task busy. When the
device falls idle, we simply perform the inverse operation marking all requests
for this task as idle and hence as candidates for dispatching.

When an interrupt occurs, we post a request in the CAM for the task that
was currently executing and make it an idle task. Then when the interrupt

handler is finished, we go back to the dispatcher and if the task which got

. . R
e PRGN RS s il a — Dpes o

13

interrupted has the highest priority, we go back to that task. Otherwise,
we go to some other task with a higher priority.

Now suppose we are executing a task for a job, J, involving the line
printer and an interrupt comes along saying that the disk has finished a
transfer for job K. Job K now needs to use the line printer. It look in the
printer status word and finds the status is busy so it enters its request in
the CAM as a busy request. When J was interrupted, it stored an "idle" request
in the CAM so when the interrupt has been serviced, we guarantee that J will
be the first one to get the line printer, line by line interlace of two jobs
not being the most propitious way to employ a line printer.

The reader will note that the use of a CAM has not reduced operating
system design to child's play but that the dispatching and interrupt routines

have been considerably simplified by its use.

Clock Wake Up List

The second place we have found CAMs useful is in the clock wake up list.
Many tasks need to be activated periodically or after a certain amount of
time has elapsed. Meanwhile they must sleep quietly using as few reources as
can be arranged. Typically, they sleep on a clock-wake-up list. When the real-
time clock interrupts, this list is examined to see if any job needs to be
awakened at this time. Once again, either the list must be kept ordered or it
must be searched. The use of a CAM elimiates both requirements. One task
available in our system will be of the form "wake me up after N time units
have elapsed," where N is an integer less than 65,536. Current time is kept
as a 16 bit number. This number is added to N and the sum modulo 216 is stored
in fields A, B, and C of the request. The number of the job making the request
goes in field D.

On each tick of the clock, we interrogate the CAM to see if any requests

BT

14

for this time are posted. If there are, we do an ADVANCE for each job
desiring to be woken up at this time. With a 60 cycle clock 64K time periods
come to 18.2 minutes. Sleeping periods longer than this must be created by
using two or more maximum periods. Provisions for looping in a job list have
been included in the system design.

Since the clock interrupt will occur with high frequency, the simplicity

of this scheme will have relatively large payoffs in system efficiency.

Memory Access Control

In a dedicated system such as the one we are concerned with, it would
seem reasonable to store most programs in ROM and keep them permanently
resident. Nonetheless, working space can sometimes be profitably shared
between two or more jobs and a provision for controlling read-write storage
access can serve as a prototype for the handling of other resources of similar
character.

Each job in the system is assigned a job number from 1 to 255. Job
number zero is reserved for the system itself. We will add a "peripheral
device" to the PDP-11 which is actually a register to hold the current job
number.

We will divide main memory into pages of 128 words (256 bytes) each.
With an 18 bit main memory address this allows a potential 1024 pages.

When a memory reference occurs, the 8 bit current job number and the 10
bit number of the page addressed are concatenated into an 18 bit word and
presented to the memory access control CAM. If there is an entry in the CAM
which corresponds to this 18 bit comparand, this means that this job is per-
mitted to access this page and the reference is permitted to proceed. If
there is no such entry then the memory reference is inhibited and an interrupt

is generated. When job number zero is detected, the CAM is bypassed and the

i

system is given permission to access any memory cell. We will make the CAM
large enough so that entries can reside there semipermanently and in fact so
that more than one job can have access to a page In case we wish to share a
page between two or more jobs. If most programs are stored in ROM, we do not
need to protect them from being overwritten and the CAM may be made correspond-

ingly smaller to give protection only to read/write memory.

I/0 Control

In the PDP-11, all peripheral devices are given memory addresses in the
range from 760000 to 777777 providing 4096 possible addresses or 8192 bytes.
To say this another way, when bits A<17~13> are all ones then bits A<12-1>
selecc one of 4096 device registers not all of which actually exist in any T
given installation. We will break these 4096 registers into 1024 blocks of
fou: registers each and provide protection for each such block present in the
system. Each I/0 device is assigned to a block or blocks and its registers are
all In two or more adjacent blocks. Examination of DEC's peripheral address

assignments indicates that this will be in accord with their recommendations.

With this scheme, we can assign 1/0 devices to specific jobs without interference.
The 8 bit current job number is concatenated with the ten address bits A<12-3>

and presented to an 1/0 control CAM. The action 0{ this CAM is then identical

to the memory access control CAM just described. We must select which of these
two CAM's is to control access on the basis of the high order address bits
A<17-13>. If these are all ones, then the 1/0 control CAM is used. If not,

the memory access control CAM is brought into play. Figure 3 shows in schematic

form how this might be accomplished.
Conclusions

We have examined four places in which content addressable memories could

Sa o €5, Lotall Men ®Ln beb v im - - v A i1/Wu
] '

-

A<I7:8D A<i2: 03>

c N——/——-——a~~———~ ;
e | |

Complarand] com [purand |
{/8 1/6

CIN#O . FERSE RN o -
Hitmaen aunics 1/0 Conol
CAM CAM
> — i
tasgander :\:,s;andev
AL 15.BD

_.l ———

;. : 'nduwﬁ
Jo i S

?'\%\n;‘ ¢\~¢u\¢\oc o\ CAw o" \v\ow*\x M ymer oum MQ . **f
ge :g/b t,ow‘\fo\ CAM u\udt o m‘\\vvuﬁ ﬁ,‘_nmssw»\" ¥

Veo 6 Bact Or Mj/h Ahnt‘l AOM‘ QX i

o

e

17 g 8™

substantially enhance the behavior of an operating system. Used to implement
the ready and blocked queues and the clock wake-up list, they offer increased
speed and simplified software. Used for access control of memory and I/0
devices, they provide services not presently implementable on a PDP-11 in
real time. There are undoubtedly other places where CAMs could be used and

as we proceed to write the operating system described above, we may discover

them.

R ——

18

References

Brown, George E., Eckhouse, Richard H. (Jr.), Goldberg, Robert, P.
(1975) Operating system enhancement through micorprogramming.
CENTACS Report No. 52, U.S. Army electronics Command, Fort Monmouth,
New Jersey. August.

Brown, George E., Eckhouse, Richard H. (Jr.), Estabrook, Jay A.
(1976) Operating system enhancement through microprogramming: design
and implementation. CENTACS Report No. 53A, U.S. Army Electronics
Command, ,Fort Monmouth, New Jersey. November.

Eckhouse, Richard H. (Jr.) (1975) Minicomputer Systems: Organization
and Programming (PDP-11). Prentice-Hall, Inc.: Englewood Cliffs, New

Jersey. Chapter 9.
Foster, Caxton C. Private communication.

Bateson, A.P., Ju, S.M., Wood, D. (1970) Measurements of segment size.
Comm. ACM 13, 3. March. 155-159.

" i
19 L
oy .
¥ P

"

Preliminary Design of CAM Hardware 3

3\ v g ?

In this section we will discuss the design of the Content Addressable
Memories (CAM). The design goal that we used were:

1. Minimal Chip Count

2. Reasonable Fast Speeds

3. No Custom parts (Standard TTL Components)

Obviously goals 1 and 3 conflict with number 2. As a compromise we
decided to implement the CAM with a bit serial, word parallel architecture.
This means that each word rather than each bit has '"local intellegénce." i
This minimizes the amount of comparison circuitry needed. It also means that
some speed is sacrificed in that each CAM operation is done on each bit of i
each word in a serial fashion even though the operations are done on all words]
in parallel.

The cycle time (per bit) was chosen as 100 nano seconds. This is within
the speeds of Schottky TTL and gives adequate overall performance. It was

also decided to micro-program the CAM operations rather than use discrete logic.

The micro-program controller will be able to operaée at 10 MHZ speeds and it - ‘
will allow maximum flexability for future changes to the system. It will
also allow for CAM operations other than the ones needed specifically for the
Operating System to be developed as needed with little or no changes to the
basic hardware.
The CAM is designed in 64 word x 32 bit blocks. 32 bit words are used
because we know we need at least 24 bits for the Operating System operations
and 32 is the next multiple of 16 (the width of the words in the PDP-11).
The 64 word block is not as limiting as it sounds, the blocks will be able
to be cascaded to any length up to 16 (1024 words). The size of 64 words is

convenient size to put on one printed circuit or wire wrap card. (about 120

20

packages). We propose to build 12 of these cards plus the one controller
card that will drive all of them (independently or in groups) and interface
to the PDP-11 Unibus.

The CAM word is designed around a dual 32 x 1 bit Schottky TTL RAM
chip (Signetics 82521, 86521). This memory was chosen because of it's ability
to write independently into either (or both) of it's two 32 x 1 memories.

These have typical access times of 25 nanoseconds (50 max). As can be seen

in figure 1, each word also needs an Exclusive-Or gate to compare (bit serially)
the contents of the CAM word to the contents of the chosen comparand register.
Additionally each word needs to have a gate to conditionally allow its contents
to be read out of the CAM. Note that we have implemented a multi-read as

well as multi-write capability. That is, all words that have their tag

bits set will participate in read and write operations.

The tag register is built with 74279 Quad S-R latches. S-R latches are
used since any single bit mis-match between the comparand and the CAM word
should reset the corresponding tag register bit (Tn) feor that word. The S
inputs are used to accomplish the "set all" Command. Figure 2 shows the tag
register and the select first (Sel 1lst) logic which is used to pick the first
responder and reset all the tag bits of "later" CAM words. 745158 Quad 2
input multiplexer circuits are used to select between the miématch signal
and the select first chain to generate the resets to the Tag bits. A strobe
signal is used to enable these reset signals only after a delay (about 50 nsec.
for mismatch and about 500 nsec. for select first) to allow for gate propagation
times.

Although the select first chain could give us the answer to the question
"are there any responders' the propagation time is too long for the cycle
time of the CAM so there is another set of logic (figure 3) to monitor the

tag bits and generate a SOME/NONE signal. This logic tree will be able to

ey

21

respond fast enough to be used as a test by the micro-controller. Not shown
in the diagrams is the logic to connect several (up to eight) of the 64 word
blocks together to allow for a maximum of 1024 words. Also there will be
circuitry to cascade the select first and SOME/NONE circuitry.

The control circuitry is shown in figure 4, 5 and 6. Figure 4 indicates
the interface to the PDP-11 Unibus, the comparand registers, the comparand
multiplexers, the read decoder, and the CAM control word. The micro code can
select one of four 8 bit comparands to be compared against the contents of the
memory in either true or negated form (C@# is simply a source of zeros). The
read decoder is necessary since the data is read out of the CAM words in a
bit serial mode. The data in the CAM control is used as a branch address
in the micro code. This is similar to the Branch On Op-Code (BOOC) operation
used in microprogramed computers. Not shown is the additional circuitry
necessary to specify which subset of the up to 16 64 word block are to be
operated on. This will be done with discrete logic and will be transparent
to the micro controller.

Figure 5 shows the micro controller itself. The microprogram will be
stored in 745471 type PROM or 745371 type ROM chips. A preliminary count
shows that about 128 instructions will be needed to execute the six CAM operations
for the Operating System. We have allowed for 256 instructions so that we may
add other operations as needed. Typical branch control circuitry is shown in
figure 6 and the format of the microprogram word is shown in figure 7. There
is extra room in the micro word to add other controls and tests as needed for
other CAM operations. The following are outlines f~ (ecution of the

six known CAM operations.

e

22

1. Find Greatest (used to find the highest priority Task in the Ready List CAM)
Typical PDP-11 Calling sequence:

MOVB #FGTST, CCW

MOVB CDATA, TASKN

MOVB CDATA, JOBN

CAM Algorithm*:

SET TAG

WRITE (c@, 31) ; Bit 31 is used as a flag
COMPARE (C@, @) ; Busy/Idle Bit

WRITE (C@, 31) ; Keep only those that are Idle

FOR I =1 to 7 DO XA

BEGIN
SET TAG
COMPARE (C@, 31) ; See if any active cell
COMPARE (C@, 1) ; has this bit set
IF "SOME" THEN ; yes
BEGIN ; make others inactive
SET TAG
COMPARE (C@, 31)
COMPARE (C@, I)
WRITE (C@, 31)
END
END
SELECT 1st 3 To reai out the RASKN and JOBN
ZERO CDATA s It is an RS latch

LOOP ON SELECT 1lst TIMER ; for propigation delay
FOR I = 8, 15 DO

READ (I) 3 TASKW

23

ZERO CDATA 3 Kkk

FOR I = 16, 23 DO

READ (1) ; JOBN
SET TAG
WRITE (C®, 31) ; Reset all Flags
BRANCH TO NOP ; for new CAM operation

* For the following Algorithms the following conventions apply. WRITE (CX, Y)
means to write into CAM Bit address Y the corresponding bit from comparand CX.
CX implies inversion. A similar meaning is given to QOMPARE (CX, Y). READ (Y)

simply specifies the bit address of the CAM words that will be read.

*% For simplicity "For" loops are shown. In actuality these loops will be

unwraped in the micro-code to speed up operations.

*** Handshaking with the PDP-11 is not shown but it will be done in the micro-

code by means of the MASTER SYNCH test and the SLAVE SYNCH CONTROL BIT.

1A. Find Greatest (this version is faster, but it assumes that the priority

is coded as one bit per priority level rather then levels 0-128). Since
the 11 allows only 4 levels of priority there is some justification to
assuming that 7 levels will be enough for most applications.
FORI =1, 7 DO
BEGIN

SET TAG

COMPARE (C@, 0)

COMPARE (C@, 1)

IF "SOME" THEN

BRANCH TO L1

END

Ll: SELECT 1st
(* READ IS THE SAME *)

24

2. Make Entry (used to post a request in the Ready List CAM, or Clock
Wake Up CAM)
PDP: MOVB B/I - Priority, Cl*
MOVB TASKN, C2%*
MGVB JOBN, C3
MOVB {#ME, CCW
Algorithm:
SET TAG
FOR I = 16, 23 DO
COMPARE (C@, I); Find Job ¢ the Null Job
SELECT 1st
IF "NONE" THEN
BEGIN
INTERRUPT; =
BRANCH TO NOP
END
LOOP ON SELECT 1lst TIMER
FOR I = 0, 7 DO
WRITE (C1, I)
FOR I = 8, 15 DO
WRITE (€2, I)
FOR I = 16, 23 DO
WRITE (C3, I)
BRANCH TO NOP

* Cl, C2 will get the upper and lower byte of the Time for the Clock Wake Up List.

%% If the Ready List CAM is full (no Null Jobs) the micro-controller will in-

form the Operating System by generating an interrupt.

4.

5.

25

Clear Entry (used to remove a request from the ready list or the clock

wake up list CAM)
PDP: MOVB TASKN, Cl
MOVB JOBN, C2
MOVB #CE, CCW
Algorithm:
SET TAG

FOR I = 8, 15 DO

COMPARE (C1, I)

FOR I = 16, 24 DO

COMPARE (C2, I)

FOR I = 16, 24 DO

WRITE (C@, I); NULL JOB

BRANCH TO NOP

Make task idle
PDP: MOVB TASKN, Cl
MOVB {MTI, CCW
Algorithm:
SET TAG

FOR I = 8, 15 DO

COMPARE (Cl1, I)

WRITE (C@, 0)

BRANCH TO NOP

Make task busy
PDP: MOVB TASKN, Cl
MOVB #MTB, CCW

Algorithm:

3 e

6.

26

SET TAG
FOR I = 8, 13 DO

COMPARE (C1, I)
WRITE (C@, 0)

BRANCH TO NOP

Exact match on time (for the clock wake up list)
PDP: MOVB TIME@, Cl

MOVB TIME1l, C2

MOVB #EMTL, CCW

MOVB CDATA, JOBN
Algorithm:

SET TAG

FOR I =0, 7 DO
COMPARE (C1, I)

FOR I = 8, 15 DO
COMPARE (C2, I)

SELECT 1lst

ZERO CDATA

IF "NONE" THEN
BRANCH TO NOP

LOOP ON SELECT 1lst TIMER

FOR I = 16, 23 DO
READ (I)

BRANCH TO NOP

82521 Dual 32 x 1
74586 Quad XDR
74503 Quad Wand

745158 Quad 2:1 max
74279 Quad SR latch
74532 Quad or

745133 13 input nand
74504 Hex inventor
74530 8 input nand

27

Package Count 64 x 32 CAM

32
16
16

64

16
16

\I'I—‘ = O

119 packages

o9

._1_;_‘4“:5 i

}X’-P"’\}f\m Moo ©f C AV CovaTQo | L

~RBDWITs X256 NWenDS

<L
...... ‘ 2y
S5
NN e Aw/ o
Ay o PRSS AL D.¥ A Teats lcamg| <A™ ALOLESS BT (suTROLS
LR MEa . LS, A 5¢
? < k) 2 ~5 ~ 9

Ve TELhow ca1DEe®
LBITS ot
CRAY pRULLK RS

Cﬁ‘ To Mreay L‘\';\
L ow Q«ch—\\ WMo bn &
V) DaXYa Decodar:

T&61TI % Sown/d weons Lywg
SQ\A.\' 1‘)* T~er
it 0~ CAN QD'\'* =\ \Ja"x
Meuste r SopneN STy PR-AL

\Q)
\ L AL
Chw Cow XKOL%‘. SN N - N (S PN Q;v\\&."'\ (_g.'*\b\‘ ‘Y‘Vb \‘

‘x\ I R vV & R ;
2Ers G JATA REGBT €
Covegont (Rasb\ Vo AN
NAoA ¢ A-\,\ Co ~gar wa &\'\icf*
READ -

AV AR &

yoP-l Buss
Cow TROLS » S)’\H‘L‘«IJ\$VQ<- k4

In \t v !

“THIS PAGE IS BEST QUALITY PRACTICABLE
FRUM COrY FURNISHED TO DD -

—

B

R 000 O CTHSTNUN X200 Mossy
FTIVOTIOVS XITTVND Iowg ST #0Vd S1Hg

29

(%0 o0>3Q a¥IY oL)

{*c v(wa °* —

21901 IL AN AN
GUIX™ T MoSIMY A WOD S atd >

MpeMIW WS 30 SAVOATL TFT gyalyl &

v

1
AV

.

_ A QJ//J o*‘dd - - e ﬂn‘"ﬁ«‘ *—& - I(‘.‘
“ - e 3
_ e , A(:L« ey MUy 4y *ceom('.:@ 1 7Q _
| lﬁt@
| (M 4 e Sy Rp eus g o T B ™
_
_ . ’
TN L3SIY ——— -
.
m -~ > WAy
©S, L

,_ L(- LY —t‘.hl

IR : “aie 8
| \M- XS IFAS m Lfr‘] \ XNA.
| S+ a
, (Mg “sIW) \ > AR e i J = P g
! “L {3530 S (2SS | RIS . e %
| = = L
M 3

—TT T
S+ v ¥
L o
) A R | e))

- bt

i 4l Lrress

30

A AT RN XTNT

L R g BT

NIT 7?2
Aamy (&-C)sawyh

9 "Ox POX WELS(HVY N 7 Iwag4

byl w315

3IVOULS
HoLw X2 aNCg bLTHL PR TR . [LS Y AIS/Sunavod
ﬂr *SY S W
— () S J €L
: - =W 13572Y
. _=le 30 : bed n
% i ey ¥
7y "
N.—- WOJ N‘r\
s 13} ! . 1353y
X 2 ‘
s = = = < 3 v
4
- — & DRy
S P '
t = L
e = N ‘s * 1559y
Ve b)
‘v
e L
ox
o ° G o
972
o

AYODS § SIIINS 007 &8C ZF &
3gVNES § i3S 00! ZeL Zv
¢ ief t¥ &

IHYNOS ¢ 513IHE

s

AN

31

(saveom). WA Nmowng)
7(HL01 BINON/IWOS

Tivahna

INON/ I\NOT

&

s

TN

700w My
(
AP am TeaPLNOY wwd ‘arauviwon T 3G

- AQ & 2L SunS (s 9 1y

f_,drf(/ ﬂld CCA./NU(—\J\/(F ﬂA\q \/
Lt TRELSVGRY Walci-7

A

WBOM - e

YiAwW Q.72 owB3Z
B L\S ML L B3Q7IU gy 9 Llwa- bee)
m -
w L LLUGL 1BV ~92 <7259 v3ICeI3q B\ SOPO M
e ' SSTWGG T LU & VAN _ ol
| ! AT RO MivQ
’y
b i B . y xPa s w« SLIQ Ay wy o
Ny -~ 0 i So, ;
| R S
” *iu»lnﬂ "
/0‘*(°|VI)\A s LV\V
| e B
| _ Xew It L
Fle it 27|
_ £ m Aﬁk*r»“ul.(‘ Or erfnpr w ﬂ.rlf.nm» =
| S1iqQ _ 1
. -) 2o
" TVoA 10N Yy D = 2 o
i 5 rAN
A J T |
| . -]
i s “e & G\ B S5y sl ~ ~
| : (L = d Tl & - = AT Q
m P—
” e N e Wy - PR I s—
: T D00 O GRHSTNMNA X200 Mowe
= FTovoTIons x11Tvnd 1S39 ST IHV] SIRL p
| ,v M HA Rt .NI‘. v
i avnos Ins L1

B g B i

sdeMd 211y -Q
“ L2 ™

ML QLiskl (s)
1241 <O .FILON

IOV Moo
WwdOOUd-0¥ MW T T 3unhl 4

OF93s Ls3L

SS3(tw Tiw.s

v./.-.b..ﬂ)O

SE50%PY SSwd

& &

" u/ (@] _
& 04 b

(aqw -w) >4 LAgLAo

S PONDTHW O\

®

! 1

|
m |

Pl fa =
|)
_ - 3
| =
! woy 1L SwL ' prirs BT
e T S .Wl - (roex bl&y
(s9:'v> @ xas1 (3) - ud s e,
r Sverao ohxaar s af
abey S H w

“ _W\ v l*\ A > :&;

2
“] oy e
| Slfdwt S &%)
| e . NP LD Nrrwxg . b~ W
_ ;
w kﬂhﬁﬂd wILSNW
| v

o = e — o G
CWaM TAPLMC) Wy
“ NO HINEDQ
71507 Nay L Nor yowuyg Tul4 AL A 78S
{ " SR
T 3unbh g
’r
4 HOMAS DI LS W
o
1934 Moy~ ACpm(cu w
: Ufﬂzﬂo
< = 05, C
|
I~ LHO TeOMN Sy o
. EE LN
(G Jld’.\#(laﬁ
: O g
o7 %0, o
e N S e L 3
. >
T
knih-*ﬁaxf.:) <,
= 14530 ®3ILSWiN
IR T
0 O tge 51 <~ S
B Avegd ALITVOD ISEE S
v .\h@. FTavo110VES)

dhe 2

PRV oﬂ\\

it L2 - N\

|
|

el b

T daaoxr TIHSTNUNI X300 WoMT
TIGVOTTOVY ATTTVAD IS3g ST IDVd S1HI

maooel ®OAFY A0S

OOJ' \ { b o
mu-.:oww..d@ﬂauu.»/qief ' w0 Wt DR J

TN 20 (e Oowx < " Ty 5 e B S
B ik LA B O I vy AT grpa 3T 1 RE 5)
ol ; [v 0o B T W
i TESWN 0@) 5 @ T Wete
.« V,i vv - Orﬁqdm.J) N¥VJII-I)J\JAF " § ﬂa’w lwA :
- -
bt TE A 0O B iy 0404, AN AL w3 xS <
i L £2- N «OoBLYA (yo3s vm fag| 2
.ﬂ . ey TR N R - 4 /.r.w ol :uw 4 7 N <
. = %\ ol a0 (o, TR IS, L 1 Q w e v 0
b5 rmui \w.-m.ﬂruo..d,(»;,.).f.-l XH
!) Jt‘"oog
LQ.mr g g A
", s e

-

an\ 3
1 v ' $1S3193uy
% Iw.auﬂ/..d/nr\.*ﬁo.r.lo n.Vﬂ— e oW M * ﬂ/&

= QoL W ASW L

&

82521
74586
74507
745157
745175
74532
745133
74504

36

Power Requirements (Typ.)
Each xN
130 MA
250 8000 MW
70 2240
250 8000
300 9600
140 4480
19 209
114 _ 228
32,757 MW

32.757 Watts
I = 6.55 Amps at 5 volts

e

37

Brief summary of the Kron@s operating system

1) Overview:

KRONOS 2.1 is one of the operating systems for the CYBER computer
fap ly. It accepts jobs from batch, remote batch and time sharing. Its
design goal seems to be a compromise between giving a reasonnable response
time to interactive jobs and insuring an overall high throughput.

The system overhead in the central processor is limited in compa-
rison to other operating systems since a large number of system funetions
including scheduling, are performed by peripheral processors. As a result,
KRONOS has a rather high degree of multiprogramming.

2)System Request mechanism:

When a program makes a request, it posts a description of the request
in a fixed location of its address space (1.e. RA+1). The program can either
initiate a context swap (XJ instruction) to the system or continue
processing until the request has been taken into considera-
tion by the peripheral processor monitor. For most requests, the program
is suspemded from the time it initiates the context swap (or from the
time the request is taken into consideration by the system) until the time
the request 1is satisfied. This feature is called auto-recall. For data
tranafer requests, the program can continue processing while the request
is performed. It is possible for the program to check from time to time
whether the request has completed. These requests are said to be honored
without auto-recall.

The context swap issued by a program exchanges the CP registers
with a block of 16 words in the system protected address spase. This fea-
ture allows the Central Processor monitor to take the request into account
much faster than PPU Monitor. If the request is without auto-recall and
the program issued a context swap, the control is returned to the program
once the request has been initiated.

et e —————— e ———— e ——

38

3) Basic program environment

A Job 1s a sequence of program steps as indicated by a sequence oF
control cards (if the job is from batch or remote batch origin) or by a
sequence of time shariung commands. The only way to preserve information
from one program step to the next is through temporary or permanent
program files.

2.1. Memory management:

¥hen a program is loaded, it is allocated a fixed, contiguous part
of the central memory, called Field Length (FL). The program address spa- i
ce maps directly into this portion of the central memory. The RA intermal
register contains the absolute starting address of the field length and
is added to every address expressed during program execution. The FL inter- :
nal register contains the maximum displacement allowed in the program
address space and prevents the program from addressing outside of its *
assigned bounds. The only memory request that a program may issue is |
MEMORY. Depending on the parameters, MEMORY will extend or reduce the
program fiedd length at its high end. Any other system action like
compaction of the central memory or swapping of the acfive program is |

totally transparent to the program. 4
KRONOS provides an extensive repertoire of file management requests.

Since these functions are similar te the ones in other systems, they are |

not reviewed here. |
Data transfer reguests - » simple record oriented transfers

(WRITE and READ, with & few w ‘ons) between mass storage and

central memory buffers. When iseuing a data transfer request, a pro-

gram has the option to suspend itself (request with auto-recall)

or to comtinue computing and periodically check for completion of the

transfer (request without auto recall). In the later case, the program

can suspend itself until completion of the request (by issung a RECALL

request), once no further proccasing 1s possible.

3.2 Tagk Management:
There is no provision for quasi parallelism within a program in

39

KRONOS. From the system point of view, each program is a sirgle task.
However, KRONOS provides facilitles for a user to decompose his program
into an"executive task" and varlous subtasks. The "executive" has complete
control of the "subtasks": within the time slice allocated to the program,
the user executive can allocate sub-time slices to the subtasksj the user
executive can protect itself from the subtasks and can protect

the subtasks from each other; the user executive intercepts all system
requests issued by the subtasks.

Besides these pseudo tasking facilities, KRONOS enables a program
to suspend itself until a previous request is completed or for a certain
duration of time (RECALL requets). The ROLLOUT request is similar
to RECALL in that the program is suspended until a previous request can
be satisfied, an external event occurs, or until a certain amount of
time has elapsed. ROLLOUT differs from RECALL in that the program is
swapped from the central memory. From the system polnt of view, ROLLOUT
is preferable to RECALL when the expected waiting time is long. From the
program point, ROLLOUT and RECALL are logically equivalent.

Another feature relevant to task management is the possibility for
a program to create another job through the SUBMIT request.

The MODE request allow a program to specify which central processor
exceptions (e.g. division by zero, indefinite operand, address out of
bounds) should cause termination of the program and which exceptions are
to be completely ignored by the system.

The ERREXIT request facilitates a limited amount of error recovery
processing. When issuing the ERREXIT request, a program specifies a single
entry point to which control should be passed when a fatal error occurs.
Fatal errors include not only fatal central processor exceptions but also
exceptions that occur during processing of other requests like illegal PP
or CP requests, time limit, exceeded maximum number of files, or exceeded
file space limitations.

40

4) Subsystem Environment:

KRONOS provides additional facilities for programs that are exten-
slons of the operating system itself, like TELEX, the time-sharing exec-
utive, or TRANEX, the transaction executive. These facilities can be
rgahly classified between extensions of the memory management, file

management and interprocess communication primitives.
4.1. Differences_in memory management:

Subsystems are programs explicitly known by the system and are
given the highest priorities. They are permanently resident in central
memory and cannot be swapped.

Subsystems have access to priviledge files and to the files that
have been submitted to the system for execution or that result from the
execution of a submitted job. ’

PPU program - Subsystem communication:

A subsystem may request a specific PP program to be '

loaded in a PP for as long as the subsystem is in central memory.

Further interaction between the subsystem and the PPU program may
take place through mailboxes in the subsystem field length.

Subsystem - Subsystem communicationss

Each subsystem may contain two buffers for messages in
its field length. To send a message to subsystem B, subsystem A
issues an SIC request indicating message buffer indices for A and
B's name., When A issues an SIC request, the contents of A's message
buffer are copled to B's message buffer, (PYy the master PPU)

A similar operation is available for B to get a message
from A. In this case, B issues an RCB request, indicating buffer
numbers in A and B, and A's name. When B issues an RCB request,
the contents of A's message buffer are copied to B's buffer.

Both SIC and RCB can be performed with or without auto-
recall.

41

c

5. Discussion

A system like KRONOS does not provide complete facilities for
tasking or interprocess communication. It only provides some mechanisms
that can be used to implement tasking or interprocess communication.

Because they are only simple mechanisms, they are easy to
implement, they are fast in execution, and they suit most applications.
The only problem with these is that the user has to devise policies and
conventions on how to use them, and the user program includes a signifi-
cant overhead to implement these policies.

On the other hand, if a system provides complete facilities for
tasking or interprocess communications, these facilities have to imbed
more elaborate conventions on their use. They would be more complicated,
slower, and less "general-purpose'. However, applic;tions for which
these facilities are well suited are easier to implement and do not
include the same overhead.

All in all, both approaches may yield the same throughput or
response time when considering Operating systems and application
programs together. But the potential for enhancement appears greater in
the second case. ‘ = -

In practice, it is difficult to look at operating systems from
such a simple point of view.

1) It is difficult to make the distinction between what is called
above a "mechanism" and a "eomplete servige". Obviously that
difference exists between interprocess communication in KRONOS
and interprocess communication in MULTICS. There is however no
sound criterion to make that distinction.

2) Facilities like tasking or interprocess communication are not inde-
pendant from other aspects of operating systems (store management,

protection, etc.)and result from complex design decisions.

42

However, this way of looking at operating systems may be practical to de-
cide what to do next. I suggest
1)A study (in fact most of the work has been already done) of
possible hardware enhancement of basic mechanisms like:

- interrupt mechanisms.

context swapping mechanisms.

scheduling primitives.

- programmed requests mechanisms.

- basic techniques for interprocess communications

- tasking mechanisms.

in various contexts (virtual memory, multiprocessor organigzations,
or simple PDP-11)

2)The harware enhancement of complete services in the context of a
well defined operating systems; e.g. take a standard envhronment
(some revision of the previous design.), a base processor, and
some well defined goal for the operatig system (e.g. multiprogram
ming, segmented memory, minimige response time), and propose a fast
implementation , drawing upon the proposals of 1) above.

43

Primietive Functions

The primitive functions of an operating system can be roughly
decomposed into:

1. Process (or task)management.

2. Processor management.

3. Memory management.

4, I/0 Management.

5. Exception handling.
This decomposition is for prsctical purposes only, for choices made in one
domain may seriously restrict the alternatives in another domain. This
document attempts to make explicit the various choices made when selecting
the primitives of our basic operating system, and the interplay of these
design decision.

The goals of this design are indicated in the shopping list of table
1. In fellowing sectior’, the five areas above are reviewed. For each area,

the various alternatives of each design choice are explicited.

1.Process Management:

1.1 Process Definition:

The first choice is whether the system recognigzes the set of appli-
cations as one single program (e.g. RT-11 without background job) or many
entities like tasks or processes (ports in Umass, Jobs in S0S, tasks in
the Representative Design, jobs in KRONOS). We choose the later.

Since we decide on managing a certain number of processes, a few

44

SHOPPING 1list:
This operating system is for the following sort of applications:

Time-sharing,
Batch Processing,
£~ Real Time Applications,

__ General Purpose.

Main objective (parameter that can be measured) is:

Minimize response time to TS users.
4 Minimige response time of active processes to external events.
__ Maximize processor utilization.

Maximize memory utilization.

Maximize peripheral equipment utilization.

Secondary Objective:

__ Minimize response time to TS users.

__ Minimize response time of active processes to external events.
4 Maximize processor utilization.

__ Maximize memory utilization.

__ Maximize peripheral equipment utilization.

Operating requirements (qualitative parameters) are:

__ Rellability. If so,indicate potentially adverse agents,e.g.
user ﬁrograns or external events:

__ Protection. If so, indicate what should be protected and against
whats

f:,Coet efficiency.

__ Ease of modification of system and applications.

Tase 41

45

questions arise:

a., What is a process ?

b. How is it recogniged by the system ?

c. How many processes are managed?

Ansvwering these questions already has a serious effect on Processor and
Memory management techniques.

For simplicity, we describe a process as a collection of a main
program along with some subroutines and some blocks of data. This corre~
spond to the notion of a task in 0S 360, program in Kronos, job in RT-11,
and in SOS and the task representative Design.

The information the system maintains about a process contains at
leasts

where it is located in primary or secondary storage.

its current state (ready, active, blocked, etc)
- a "save area" holding the current values of registers when the
process is interrupted.

a 1list of the ressources the process owns or is entitled to use.

a list of exception handling actions.

additional information related to interprocess communications

]

and synchronization.

The question of the number of processes is fairly complex in its
implications. On one hand we could have a fixed number of processes which
exists all the time (SOS, RT-11). On the other hand, we could have a va-
riable number of processes (with may be a maximum number fixed by the

system). This is the case of KRONOS and Umass (i1f one consider active ports

L

46

only). In the later case, we would have to decide how processes are cre.
ated and destroyed, who may create and destroy processes, and what is
the relationship between a craeted process and its creator.

The choice between fixed and variable number of processes depends
also on whether a process must be a primary memery or can be swapped to
secondary and remain ‘active’ This in turn depends on whether processor
management deals short term scheduling only (e.g. S0S) or with short and
medium term scheduling (e.g. KRONOS).

For simplicity, let us decide that processeé-must be in primary
memory. Two alternate solutions are:

a) Fixed number of processes: All processes are defined at system
initialization. No creation or deletion of processes may occur
during operation.

b) Variable number of processes: A certain number of processes are
initialized when the system is bootstrapped (e.g. process
accepting commands from the operator console). These processes
can in turn create some processes and start them. No hierarchi-
cal ordering is imposed between a crea;ing process and a created
process. A process can terminate or be destroyed by another
process. The primitives needed in this case are:

- create a process

- terminate a process

47

Because our basic operating system is aimed to manage a falrly static set
of real time applications like RT-11 or SOS, the first solution is pre-
ferred. A fixed number of tasks is managed. All tasks are known at systenm
generation and must be resident in primary memory.

Process synchronization denotes the set of primitives by which a
process can check the current status of other processes or can delay its
execution until other processes have reached a certain state.

In RT-11 and Kronos (auto-recall feature), a process can synchro=
nize itself only with a single process, The kind of event on which a ;o
process can synchronige itself can be a date (check whether the clock or
process has reached a certain date, or wait until a certain date occurs
or until a certain amount of time has elapsed), or the completion of a
given 1/ operation. The corresponding primitives are:

- check the status of an event.
- walt for an event to occur.

In addition, RT-11 and SOS supply SUSPEND and RESUME requests by
which a process can go.to sleep and be later reactivated by another proe
cess. This equivalent to a binary semaphore on which signal and wait e
operations can be issued. Whereas the previous primitives "check"
and "wait" allowed a regular process to synchriénize itself with a pseudo
process running under interrupt level, semaphores facilitate the synchro-
nization of regular processes according to preestablished strategiles.

To facilitate the synchronisation of more than two processes, general

e

47,1

semaphores are preferable to binary semaphores. In our operating systenm,
semaphores are defined statically, at system generation time. The primitive
operations on semaphores are the classic:

- signal (semaphore)

- wait (semaphore)

Inter-Process Communication (IPC) demotes the pramitives by which
two processes cah exchange short messages (e.g. application process and
cperator console process). RT-11 and KRONOS provide such facilities.

There are two ways to consider IPC primitives:

1) IFC primitives are considered independently of other synchro-
nization primitives as in RT-11 or KRONOS. IPC primitives include a
connection primitive to establish a unidirectional communication link,
send and receive operations similar to I/0 read and write, and an
acknowledgment protocol.

2) IFC operations are considered as an outgrowth of synchronization
primitives. When two processes want to communicate, a mailbox is provided
by the system. The two processes manage this mailbox according to a
glven strategy and coordinate their operations with semaphores (see
Brinch Hansen p 104)

The first approach is needed in systems like KRONOS where processes
cannot share a portion of the memory. The overhead of this method is rather

higﬁ because messages and acknowledgments must be copied back and forth.

vy

48

To keep a low overhead, and allow more flexibility at the process level,

we choose the second solution, although it does not appear in any of the

systems reviewed. It simplifies the internal structure of our system, but

it also implies that processes should be allowed to share a message buffer.
Because of the applications projected for this system, message

buffers are defined statically at sytem generation time and are resident

in memory durlng system operations.

— " ———— — ———— — —

A process as defined in the previous sections can be in one of 3
states: blocked, ready, and running.
Bloekad processes can elther be waiting for an event or stopped at
a semaphore. With each event is assoclated a queue. The basic operations
needed to manage an event queue are:
- Enter a process into an event queue.
- Transfer all process from an event queue to the ready list.
With each semaphore 1s associated a counter and a queue. The basic

operations needed to manage a semaphore arei

Test semaphore counter.

Increment, decrement semaphore counser.

Insert a process at the_ggﬁ»of the queue. o

Remove a process from the—Egginning of the queue.

49

2. Processor Management.

Processor Management denotes the set of operations and policies
used to share the physical processor(s) between the pseude processes
and the regular processes.

Pseudo processes are interrupt servicing routines and run under

hardware interrupt level. The system may manage information about these
processes but their scheduling is usually imbedded in the base hardware
(ef. PDP-11).

The regular processes are not directly activated by external events,
Processes that are not blocked are either running or ready to run. The
ready list contains the names of those processes that are eligible to run.

The scheduling algorithm used in Umass can be likened to a Round
Robin algorithm. A sigle list of ready processes (compilations and exec-
utions of user programs) is managed in FIFO order. The processor is allo-
cated for a time slice to the process on top of the list. If the process
completes its time slice without blocking itself, it is returnad to the
end of the ready list.

In SOS, the list of ready processes is ordered by priority, The
highest priority Jjob is given the control of the CPU until it blocks
itself or terminates executing the current task. If the process does not
block itself, it is reinserted into the ready list according to its
priority. An executing process may change its priority.

A process is allocated the processor for the duration of a

whole taskj there is no fixed time slice.

50

KRONOS uses a priority queue to allocate thé processor between
the processes resident in primary memory. The priority of a process can
be fixed (high priority processes like TELEX), or variable. In the later
case, the priority of a process depends on the base priority of the user
and the anticipated use of ressources. The highest priority job on the
ready list is given control of the CP for a fixed time slice. It is then
reinserted into the ready list just before processes of lower priority.

For a real time operating system, the primary goal of the sched-
uler is te insure a minimum response time to external and internal events,
I'nere are two ways to look at this goal. This, in turn,suggests two
different scheduling techniques.

1) To insure a minimum response time to a single event, the proc-
essor should be allocated to the process that deals with the event until
this process terminates. Since many events may occur quasi-simultaneously,
the various processes are assigned a priority. The scheduling algorithm
uses a simple preemption scheme. When a process is dispatched to the
ready queue, its priority is compared to the priority of the running proc-
ess, If the running process has lower priority, it is preempted and
returned to the ready list; the incoming process is allocated the proc-
essor. If the running process has a higher priority, the incoming process
is inserted into the ready list. When a running process blocks itself
or terminates, the highest priority process in the ready list is sched-

uled. To provide some flexibllity, 2 running process may modify its

al

priority. If a running process lowers its oriority, the ready list is
inspected and the running process may be preempted to be replaced by the
currently highest priority process. With this algorithm, there<is no
need to distinguish between hardware interrupt routines and other proc-
esses,

2) To insure a minimum response time to all events, in the average, i
all processes in the ready list should be allowed to advance smoothly.
This implies a Round Robin scheme, where all processes have similar prio-
rity. Bach ready process receive a fixed time slice on the processor
before beimg returned to the end of the FIFO queue. Preemption is avoided.
This scheme minimizes the system overhead.

There is no reasém to prefer one scheme to the other. Quéuing models
do show that either one can be better than the other depending on the job mix.
But these models rarely account for the CP time taken by the scheduler
itself or by the preemtion mechanism. No choice will be made at this point
and both techniques will be investigated further.

The various aspecta of processor scheduling that are serious can-
didates for hardware enhancement are context swapping and preemption
mechanisms, the ready queue and its manipulation primitives.

3. Memory Management.

Memory management denotes the set of technlques by which the
physical memory is shared between the various processes.

For a real time system whose load 1s known at system generation
time, little more is needed than what is provided by KT-11 or S0S. The
memory space is allocated statically between the various processes when
the system is generated. No protection between the various processes is
supplied (the programmer is implicitely trusted, or the software devel-
opment tools prevent undesirable interaction between processes).

The main reason for this approach is that real time processes must

52

be memory resident to provide acceptable recponse time. For those processes
that are not so critical,e.g periodic checkpoints or processes that need

to be scheduled every few minutes or so, 1t may be too expensive to pro-
vide enough memory. These processes can be decomposed into a resident

root and one or many overlays. These processes may share (through sema-
phores) whatever space remains available (this space is known at system
generation time) to load their overlays. The load point of these overlays
is known at system genration time , so that no relation need be performed
at load time. Semaphores and basic 1/0 operations are thus the only serv-

ices required to manage overlays.

4, 1/0 Management:

By 1/0 management, we mean the techniques used to manage I/O devices,
and the services provided to the user processes using these devices.

The first step is to specify what 1/0 devices are managed by the
syatem.

RT-11 manages common peripherals only. Application programs may
supply their handlers for private devices, but these handlers do not
interface with the system (it 1s not possible to issue a WRITE request
to a private device). In short RT-11 does not know about private devices.
This is made possible by the vectored interrupt system of the PDP-11.

In all other systems we have reviewed, all devices (private and

common devices) are known by the system. kach device has a handler (com-

33

posed of an initiadization routine and an interrupt service routine) which
is incorporated in the system at system generation time, In KRONOS, RT-11,
and the representative Design, device handlers are not permanently
resident. The only reason for doing so is to save memory for other use
when some devices are not in use. For our design, we wlll assume that all
device handlers are memory resident (first, memory is cheap; second, it
might be impossible to predict that a device is not going to be used for
a long period of time).

There are three types of I/0 devices which are managed differently
in most systems:

1. System owned/ system managed dewices.

2. System owned / system allocated devices.

3. User owned / user managed devices.

The first two categories exists in all systems. System owned and
managed devices are shared by the system and other processes, like a disk
unit. These devices are file structured and can be used quasl simultane-~
ously by many processes.

System owned and allecated devices are allocated by the system to
a single user at a time (e.g. tape drive or plotter). A proeess must
request the device before using it and return it to the system afterward.

User owned and managed devices are private devices that are dediw
cated to an application (e.g. radar, or dedicated terminal).

The various types of services provided by the system for each

type of device and the prospects for enhancement are discussed below,

Most system owned and managed devices are mass storage devices,
where the system maintains a file structure for itself and for user proc-
esses, The kind of services provided to the user includes:

- file management services: open file, close file, rename, change,

purge, copy, etc.

- data transfer services: read a record from a file,

write a record to a file.
These requests are processed by the file manager which, in turn, calls
the device handler,.

There is little prospect for the enhancement of most of these oper-
ations, because they depend on specific file structures and specific de-
vices., There are, however two functions,that require our atteatiens

- file space allocation: Any system uses a ftraek allocation algo-
rithm (c.f. MST/TRT table and its management in KRONOS, and simi-
lar funetions in Umass)which can be time consuming when the
avallable file space is large.

- data transfer optimization: the average access time to a spe-
cific location on a mass storage device is very long. Studies
show that when disk operations are performed in the order in
which they are requested, the use of a moving head disk is far

from optimium. Consequently, the average response time of 1/0

55

bound processes is affected, By reordering the sequested disk
operations that are requested, the apparent asccess time to the
disk can be lowered and a better response time can be obtained
in the average.

4.2 System owned /_system allocated devices:

Thia type of device correspond to tape drives, plotter, etc, which
can be accessed by one process at a time, for a long period of time (e.g.
tape drive, paper tape punch, plotter). These devices must be explicitly
allocated and returned. The services needed for this deviee include:

- allocate device.
- return device.

A process requesting the allocation of a device already allocated
to another device i1s suspended until the device is returned to the system.
There is no preemption. Furthermore, we will assume that no deadlock can
occur in a real time system with a static set of applications programs.

The system owned and allocated devices do not usually have a file
structure and the data transfer requests are processed entirely by the
device handler. The data tranasfer requests are:

- Write data to device.

- Read data fwom-dewice.
Because only one process can use the device for a period of time, there
18 no point optimizing the data transfers on these devices (which are

most often sequential, anyhow). Only the alloeation scheme may be a candi-

56

date for hardware enhancement.

These devices are private devices whose handler is user supplied.
These handlers follow system conventions so that user processes may re-
quest data transfer in a way similar to 4,2. The main difference with
devices of 4.2 1s that private devices are statically owned by some

user processes.

5. Exception Handling.

kException handling denotes the set of techniques by which excep-
tional events are detected and processed.

The first step 1s to define what an exception is. The initial
concept can be best explained by a simple example. In most computers, a
division by zero causes an internal imterxupt. This interrupt is processed,
in the usual fashion, and the interrupted program lnAoither aborted or
continued. This feature was implemented because it is faster than to
force a program to check, before every division, that the divisor is non-
zero, when such an operation is unlikely to occur. The gain in speed is
obtained at the detection of the exceptional event, not during its proc-
essing.

In RT-11, the basic exceptions are illegal address (detected by
time-out on the Unibus) and illegal instruction (detected in the central

processing unit). In Umass, the exception are overflow, underflow, shift

~—

faults, divide checks, and bound errors. In KRONOS, illagal instruction,
address out of range, operand out of rangeo, and indefinite operand are
exceptions detected by the central processor.

Most operating systems define additional system dependent "excep-
tions". In KRONOS and RT-11, these exceptions correspond to illegal
system requests, time limit, file limits, or file related operations that
cannot be serviced. These exceptions are detected by software, rather
than hardware. Theilr only resemblance with the previously defined excep-
tions is in the way they are processed. We choose not to include them in
ouar design for the following reasonsi

1) exceptions are considered only because of their interactions

with other parts of a system. The hardware exceptions are
sufficient from this point of view.

Except for the way they are detected, system dependent exceptions
are processed 1n the same way as hardware exceptions | System
dependent exceptions do not require additional mechanism and
would otherwise complicate our design. If it so happens that

the hardware enhancement of our design provides for hardware
detection of some system dependent exception, this exception

will become undistinguishable from the ini¢ial harware excep-
tions. |

2) The basic hardware exceptions may occur in a fully operating

real time system, due to invalid externad data (although a

proper design would attempt to avoid them). System depen-

dent exceptioms could only occur due to sloppy design or imple-
mentation. System dependent exceptions may be needed to debug
application programs but they can represent an unnecessary
overhead during full scale operation.

The set of exceptions in our system containsi

Illegal address (unexisting physical address).

Illegal instruction.

Division by zero.

Floating point exceptions: overflow, underflow, division
by zero.

The next step is to define how exceptions are processed. In RT-11
and XRONOS, a user program can mask some of the hardware exceptions. In
KRONOS , Umass, and RT-11, a user program may include a set of excep-
tion handling routines, These rouénes are associatéd with the corres-
ponding exeeption by a system request issued at the beginning of the pro-
gram. In summary,there are three ways an exception can be handled:

1. Faulty process is aborted (unmasked exception).
2. BException is ignored and faulty process is allowed
to proceed (masked exception).
3. Control is given to an error handling routine
supplied by the process (the content of the central
registers at the time of the exception are passed to the
exception handling routine).

These three possibilities are retained for our operating system. Because

of the static set of processes in operation, the type of action to be
taken for each exception and for each process is defined statically at
system generation time. BEach process may have a different set of responses
to the varieus exceptions. Each process has an exception table with a
distinct entry for each exception. Each entry in that table contain either
abort or mask (1 and 2 above) or the entry point of an exception routine

(case 3 above).

60

Summary of Our Basic Operating System
This document summarigzes the basic operating aystéi?zﬁctrncted from KRONOS,
RT-11, S0S, TACFIRE, and the Representative design. A tentative set of -~

system requests 1is included in the text.

1. General Overview.

Our basic operating system is intended for the run-time support of
a fixed number of real time tasks. Its primary goal is to minimize the
response time to external events.

A task or a process is composed of a main program and various sub-
routines. A process must be resident in primary memory. If a process has
an overlay stucture, the main program or root of the process must be
resident in primary memory. It 1s up to tae root of a process to insure
that the proper overlay is loaded before passing control to it.

The number of processes managed by the system is fixed at system
generation time.

2, System request mechanism.

To request a servige from the system, a process must first load
one or two central registers with the appropriate parsmeters. In the case
of data transfer related operations only, one of the paremeters is a poin-

ter to an area of memory called I/0 descriptor.

a _a

ey

61

The process then i1ssues the appropriate service call instruction.
Upon return from the system, the contents of the reglsters are generally
undefined. In some cases, the systems returns one or more result values

in the central registers.

3. Process Management.

Bach process has & priority used for scheduling purposes. The high-
est priority ready process has control of the CPU. A running process may
modify its current priority using the following request:

PRIORITY n , where n is between 0 and 128.
A running process that lowers its priority may be preemted.

.CHECK DATE

A process may check that the central clock has reached a certain
date by issuingiCHECK_DATE date
Upon return, the central register R0 contains a value indicating whether
the clock has a current value lower, equal or greater than the input
parameter.

.Check I/0 COMPLETION

A process may check whether an 1/0 operation formerly requested is
still pending, has been initiated, or has completed by issuing:

CHECK_1/0 1/0 descriptor address

Upon return, teh central register RO contains a value indicating the

Y

. a———— ———

62

current status of the designated I/0 operation.
Note: If the system keeps the current status of the central clock in a
fixed location, and records the status of an I/O obéiition in its
descriptor, these requests can be eliminated (i.e. no service call needed;
the program can check by itself, using a standard macro).
WAIT DATE
A process can suspend itself until a certain date occurs by issuing
WAIT DATE date , or
WAIT_PERIOD time
w¥han the proper date occurs, or the amount of time is elapsed, the process
is returned to the ready state. No parameter is returned by the system.
drocess is resumed at next instruction following WAIT.
.WAIT_1/0_COMPLETION : ;
A process can suspend itself until a formerly issued 1/0 operation
has been completed, by issuing:
WAIT _I/0 1/0 descriptor address
No parameter 1s returned by the system,
. SEMAPHORES
General semaphores are available in our system. There are defined
statically at system generation time. The available requests are:
SIGNAL_SEM semaphore #
WAIT_SEM semaphore #
When & SIGNAL_SEM request is issued, the first process of the semaphore
queue is unblocked, or the semaphore counter is incremented if the queue

is empty. A process issuing a SIGNAL_SEM request is preempted when it

63

unblocks a process of higher priority.

When a process i1ssues a WAIT _SEM request, it is blocked and ap-
pended to the semaphore queue if the semaphore counter is zero. If the
semaphore counter is positive, the process is allowed to proceed aftex
decrementing the semaphore counter.

. INTERPROCESS COMMUNICATION.

Mailboxes are used for interprocess communications. MAilboxes are
allocated statically at system generation time. Sending and receiving

processes coordinate thelr use of a maillbox through semaphores,

i e B NG

4, Memory Management. i
Most of the memory i1s allocated statically at system generation
time. The remaining space is allocated dynamically to requesting processes
for overlays and buffer apace, The allocatlion is handled by the various
processes using semaphores.
There 18 no hardware protection mechanism to protect one process from

ancther at run time.

5.1/0 Managesent.
2.1 File_management:
Processes can manipulate files located on system owned / system

managed devices. File management requests are directed to the file manager.
The requests include:

OPEN filename

a2

T

64

CLOSE filename
PURGE filename
COPY filename s
The requesting process is suspended until its request has been satisfled.

5.2. Device Management.

System owned / system allocated devices are allocated dynamically
to requesting processes. Only one process at a time can own such a device,
Requests are:

ALLOCATE_DEVICE device #

RETURN_DEVICE device #
A process requesting allocation of a device already allocated is suspended
until the device becomes available. Requests are served in FIFO order.
A pEcess returning a device is preempted if the device is immediately
allocated to a higher priority process.

To issue a data transfer request, a process must first establish
in memory an I/O tranafer descriptor in a set of consecutive locations.

An 1/0 transfer descriptor must containi
- file operation or device operation indicator
- file name or device name
- record index or device address
- read / write
- location of buffer in memory

- length of buffer

65

- length of exchange (#of physical or logical records)
- a few words reserved for system control information and
transfer status.

After loading RO with the ad@ress of the I/O descriptor, the process issues
one of the transfer requests below. The requests for file oriented transfers
(system owned and managed devices) are directed to the file manager.
The requests for device oriented transfers are directed to the davice_
handler. Furthermore, a process may issue a transfer request and continue
processing or issue a transfer request and suspend itself until completlsn
of the transfer. .
In the former case, the requests arei

READ_FILE I/0 descriptor address

WRITE_FILE 1/0 descriptor addréss

READ_DEVICE 1/0 descriptor address

WRITE DEVICE I/0 descriptor address
It 1s possible for a process to check the status of a data transfer (CHECK_
1/0) or to synchronize itself on the completion of that request (WAIT_I/0)
after further processing.
In the later case, the requests ares

READ_FILE_WAIT 1/0 descriptor address

WRITE_FILE WAIT " "

READ_DEVICE_WAIT 5 &

WRITE_DEVICE_WAILT . ¥

- ———

66

6.ikxception Handling

The handling of each exception for each process is determined at
system generation time. When an exception occurs, the system first deals
with pending 1/0. Depending on the exception table, the system will elther:

a) Do nothing about 1/0, or
b) Complete all pending I/0, or
¢) Abort all pending 1/0.
Then, the system will #ther continue the process, abort the process, or
return control to an exception handling routine, as indicated in the
exception table for this process, In the later case, the exception handling
routine is passed the walue of all registers at the time the exception
occured, in a set of locations whose starting address is given in RO.
The set of possible exception is:
-Illegal address,
- Illegal instruction,
- Division by zero,
~ Floating point exceptions: overflow, underflow, and

divison by zero.

7. Other facilities.
All the run time facilities supported by our system have been

described above. Additional compile time facilities may be available, but

[ey
are not considered in this syeten.

67

Part I: System Primitives

1. Processes

The states transition diagram of processes is given on page 2. Each

process is identified by its descriptor. A process descriptor contains:

- PRIORITY: The current priority of the process.

- CONTEXT: a save area for the register contents of the process when

it is preempted.

- RETURN POINT: return address of the process when preempted or

blocked.

- EXCEPTION STATUS: normal or recovering.

- RECOVERY I/0 OPTION: abort pending I/0, complete pending 1/0, or

do nothing.

- PENDING I/0 COUNTER: number of I/0 operations issued and not completed,

used for recovery.

- RECOVERY ACTION: pointer to recovery table (the recovery table is
indexed by exceptions and contains entry point for
recovery.

-DEADLINE: current clock deadline (valid only when process is waiting

for date).

-NEXT: forward list pointer.

Except when running, a process belongs to one specific list (active list,
semaphore queue, etc..). NEXT contains the name of the next process on the
list or nil. When a process is running, the value of NEXT is irrelevant. The
running process name is contained in the location CURRENT.

2. Active list.

This list is organized as a link list ordered by decreasing priority.
All operations on this list are protected. The basic operations are insert,

ey

68

(uondwiaaidS J i a0ivd

ONILIYM

69

remove, and compare priority of current running process with priority of
the first active process. ACTIVE_FIRST and ACTIVE_LAST contain the name
of the first and last processes on the active lisit, or nil if no process

is active.

3. I/O Requests.

When issuing a ReAD or WRITE request, aprocess must specify the

address of the descriptor of the operation. The descrivotor céntainsy

- OWNER: the name of the process issulng the operation.

- DEVICE: the name of the device used for the operation.

- EXCHANG£:; all data pertinent to the exchange (fixed slze)

- I/O_STATUS; request pending, being performed, or completed.

- Next_DESCRIPTOR: The descriptor ci a wequest which pending or
being performed, always belongs to a 1list of
requests assoclated with the device, NEXT_
DESCRIPTOR contains the address of the next
descriptor in this list, or nil.

- FIRST_WAITING_PROCESS: explained in 4.

- LAST_WAITING_PROCESSs explained in 4,

- TEMP: locatrions reserved for the file manager and the device handler.

The descriptors of the requests for an operation on device D are queued
on a list associated with D. D_FIRST contains the address of the
descriptor for the transfer being processed, or 91;. if the list is empty
(device inactive). D_LAST contains the address of the last descriptor on
the 1list or nil. The list is usually managed in FIFO order, although some
devices (e.g. disks) may have different strategies. Since descriptors are
added to the list under program level and removed under interrupt level,
all opeartions on the 1list must be protected.

4, 1/0 Synchronigation,
Any process can suspend itself untll completion of a transfer

initiated by itself or any other process., When a process suspend itself,
it is placed in a FIFO 1list assocliated with the transfer. Physically, the
process descriptor is placed on a list associated with the descriptor

of the transfer. wach 1/0 descriptor contains two pointers FIRST WAITING
PROCESS and LAST_WAITING_PROCESS used to manage the FIFO list of processes
walting for completion of the transfer, I'rocesses are added to the list
under program level. They are returned to the active list under interrupt
level when the tranfer completes, A process attempting to block itself

on a transfer already completed 1s returned to the active list immediately.
Primitive operations on the synchronization 1list are enqueue and return
queue to ACTIVE 1ist.

5. Semaphores.,

zach semaphore consists of a counter COUNT to record the number of
SIGNAL's that have been received, and a (possibly empty) list
of walting processes managed with two polnters SkEM_FIRST and SiEM_LAST.
The 1list of walting processes is managed in FIFO order. Since Adding or
removing processes to this list 1s caused by the running process,
protected mode 1s required, to prevent preemption of the running
process before completion of a SIGNAL or WAIT request.

The mechanism for device allocation is equivalent to a binary

semaphore and 1s implemented similarly.

6. Clock Synchronization.

Processes that suspend themselves untll a certain date occurs are
inserted inte the Clock 1list. The real time clock process checks this list
at every clock interrupt and returns to the active list processes whose
deadline has expired. The 1list is managed by increasing deadline and uses
two pointers CLOCK_FIRST and CLOCK_LAST. Since operations on the clock
1list are performed under interrupt level and program level, and may affect the
running process, they must be performed in protected mode.

. _mxamplei
The illustration of page 5 shows a snapshot of a system with 6
processes. The running process PO has been omitted from the illustration.
Processes P{ and P2 are active. Processes P3 and P4 are waiting for the
completion of a transfer requested by P3. Another transfer has previously

21

#

1188 o—i

T 138313 o]

 TTU 13x8u

€4 TouMO

JoqdIose(q O\H

TTU 13SEL

TTu13sITy

: 3xeu

1# 103dixoseq 0/1

1d NSHTIJ
”
|

1

]
[

(q eotaeq) anent q4senbay 0/1

1988

198273]

Z- 13unod

I —

1# sxoudeusg

lllxllzlv-
13S®eT |

e S 1948313

70 13xeu

174 11Xou

MHWlli 19x9u]

ITu t193xau

2d
[—53
4xau _
WL

— 13S%®T

J3sat:

1d

HAILOV
sx03d 1088 S88001J

been requested on the same device by P! and 1s heing processed. No process
is waiting for completion of this transfer. Process P5 ls waltlng for a
signal on semaphore #1.

PART II: System Routines.

This section presents flowcharts for a number of system primitives and

system requests, 1

1. The preemption problem: Conventions.

The implementation of the preemption strategy on a simple PDP-11

L S e = Lt o

causes serious problems. The reason is that a running process may be preempted
both under program level (PRIORITY REQUEST) and interrupt level (completion
of exchange, clock deadline,etc). To make bookeeping simple, the following
conventions are useds ;
a) Reglster R6 i1s "reserved" for the common system stack. Every
interrupt routine saves allregisters.to the stack upon entry. No other
use of R6 is allowed. Thus, when the running process must be preemted
from under interrupt level, its context 1s entirely contained at the
base of the common stack.
‘When a process i1s preemted from under interrupt level, the base of
the common stack is copled to the CONTEXT field of the Current process
descriptor. The context field of the new running process is copled to the
base of the common stack (in fact copying PC, PS and R5 is sufficient).
This swapping operation and the pointer modifications in the active
1ist are performed in protected mode.
b) EBach process and interrupt routine owns a private stack for
paraneter passing and other uses, This stack is referred trough R5 in each

process.

73

2. Active 1list Routines,

RUN: called under program level to select the highest priority process
on the active list and make it CURRENT process.

CURRENT = ACTIVE_FIRST
ACTIVe _FIRST = NEXT(ACTIVE_FIRST)
RKGS 0-5 = CONTEXT(CURRENT)

SRy ey
L}

(Branch to RETURN_POINT(CURRENT))

SWAP) called under interrupt level to preempt the current process and elect
the highest priority process on the ACTIVi list.

(SWAP)

[CONTEXT(CURRENT) = Stack base
RETUAN_POINT(CURRENT) = STACK base (1)

INSERT CRRENT into ACTIVE list
| -

["CURRENT = ACTIVi FIRST
ACTIVE _FIRST = NEXT(ACTIVE_FIRST)
Stack Bage = CONTIXT(GURRENT)

r
(i)

A

74

INSERT: Called under any level to insert process P into the ACTIVE list.

(Iusm P into ACTIVE 1139

1 No

¥
« ACTIVE_FIRST = pil ?

|
|

| No -
e e P ACTIVE F 2 PRIORITY(P
=~ PHRIORITY(ACTIVE_FIRST) 2 PRIORI (;)
Yed

XT(P) = ACTIVE_FIRST
ACTIVZ_FIRST = P

[PR&VIOUS = ACTIVE _FIRST |

r

=z

.
LOOK_UP = N&XT(PREVIOUS)|
Ved ® il >

g R PRIORITY (LOOK_UP) < PRIORITY(P)/ é

f Ne
| ExT(P) = LOOK_UP [PREVIOUS = LOOK_UP |
eXT(PREVIOUS) = P J

s i

(Heturn)

e

15

PRIORITY Request: - made by CURRENT process.
- may cause preemption of CURRENT procesa.

- runs under protected mode. o

@IORITY Request)

g R A
PRIORITY(CURRENT) = new priority|

|
D,

Yer :
~<_ ACTIVE_FIRST = nil ? No

Yed _
/PRIORITY(ACTIVE_FIRST)< PﬂIOHITY(CURRENT)\>
\ 2 /
No

INSERT CuRRENT in ACTIVE 1list
RETURN_POINT(CURRENT) = Return Address

CONT=XT(CURRENT) = Regs 0-5

(Return) (RUN

ey

ea

76

3, Semaphores.

WAIT SsMi - called by CURRSNT under program level,
- may cause CURRENT to be suspended.

- runs in protected mode,

(wm)

—

No
- = _COUNT(SEM) < o>

l

LYeA
? i?muan_mlﬂ(cbmmui‘) = Return Address|
CONTEXT(CURRSNT) = degs 0-5

!
{
| /
——< SEM_LAST = nil ? r

rdul'i_FIudT CURRNT NSXT(SiM_LAST) = CURRENT
| SeEM_LAST = CURReNT SwM_LAST = CURRSNT

[Féum(?m) = couNT(S&m)7# 1|

T

NEXT(CURRSENT) = nil

T ————

77

SIGNAL SEM: =-called by CURRENT under program level.

- may cause CURRENT to be preenpted.

- runs in protected mode.

(SIGNAL SEM)

COUNT(SEM) = COUNT(SEM) + 1

v
e coun(san) >0

RETURN_POINT(CURRENT) = Return Address
P = SEM_FIRST

SEM_FIRST = N&XT(P)

if SuM_FIRST = nil then SEM_LAST = nil

l

/ ")
\pmoarry(r) > PRIORITY (CURRENT)

INSERT P in
ACTIVE 1ist

=t

Return

CONTEXT(CURRENT) = REgs 0-5
INSERT CURRENT in ACTIVE 1list
CURRENT = P

Regs 0-5 = CONTEXT(CurrenT)

(:Branch To RETURN_}OINT(CURRE§E§>

78

4. Clock Synchronization.

WAIT DATE: - called by CURRENT at user level., DATE is input parameter.
- CURRENT is inserted in Clock queue .

- Protection required to prevent messing clock queue or

preempting CURRENT before completion of the request.

WAIT DATHE

F__< DATE < CLOCK VALUD
RS y No

«=D

DEADLINE(CURRENT) = DATE

CONTEXT(CURRENT) = Regs 0-5
RUTURN_POINT(GURRENT) = Return Address

4

r - < CLOCK_LAST = nil ? >

Q

N

b

DEADLINS(CLOCK_FIRST) g DATE

Yed

!

CLOCK_FIAST=CURRENT

CLOCK_LAST =CURRENT

NEXT(CURRENT)=CLOCK_FIRST
CLOCK_FIRST = CURRENT

I
|
|

No

b PREVIOUSC LOCK_FIRST |

[LooK_uP = NAT(PREVIOUS)

|

Yes
— LOOK_UP = nil ? >
% L Ne
o v
R —< Dmumu(wox_up)zmTQ
No
NSXT(CURRENT) = LOOK_UP
[PREVIOUS = LOOK_UP |

NEXT_PREVIOUS = CURRENT

v

79

CLOCK Interrupt Routinej; -Unprotected, runs under interrupt level,

Y

CLOCK INT

DATE ‘= new clock valugJ

¥

e i ————<CLOCK_FIRST = nil ’>

‘ 8

DHADLINE(CLOCK_FIRST)> DAT;:_>

J No

P = CLOCK_FIRST

CLOCK_FIRST = NEXT(P)

INSERT P into ACTIVE list
‘ No

< CLOCK_FIRST = >

nil 7
y Yeo
CLOCK_LAST = nil

=
N
® -~ PRIORITY(ACTIVE_FIRST) > PRIORITY(CURRENT) >
Yea
SWAP l

80

5. Input Output Transfers:

ReAD (I/0 uescripeﬁr): -Issued by CURRENT under program level,
-Protection required to avold messing queue of requests

for device.

RISAD DESC:)

; N,
rlgi—<::£XST(DEVICE(DESC)) = g;ij:>-———"7
| ' JL
v

rFIRST(DEVICK(DESC)) = @DHESC NEXT(LAST(DEVICE(DESC))) = @hasC
LAST(DeVICu(DESC)) = @DESC LAST(DEVICE(DESC)) = @ DESC

N2XT(DESC) = nil

| I
I
{

Call DevIcE(DSC) initialization |

RN STy

_routine.

¥
INCREMENT PENDING_I/O_COUNTER(OWNeR(DSC))

81

WAIT I/0 Descriptor: - Issued by CURRENT under program level,
- CURRENT process suspended and appended to list
of wailting processes on I/0 descriptor queue.
- operates under protected mode until new process
elected from ACTIVE 1liat (HUN).

WAIT DsC

riﬂ—” Yﬁﬂms(DESC) = completed >

Sk =
“‘:) ReTURN_POINT(CURRENT) = Return Address
(ki CONTEXT(CURRENT) = Regs 0-5

NEXT(CURRENT) = nil

4

LAST(DESC) = m1l - No

——

f FIRST(DusSC) = CURRENT NEXT(LAST(DESC)) = CURRENT
LAST(DE3C) = CURRENT LAST(DESC) = CURRENT

n— - - S —
- — gt N R

-

82

1/0 handlers: - activated by interrupt on completion of transfer

- protected mode to prevend messing Device queues and ACTIVE

queue.,

Interruptt Find D, interrupting Device,
Perform bookkeeping

DESC. = F‘IRST(D)
STATUS(DESC) = Completed
FIRST(D) = NEXT(DESC)

lm‘cm:nwr PENDING 1/0 (‘OUNTP,R(oum«.n (DESC)j

it
Fo SR el

fLAs'r(D) = nu INITIATE TRANSFER OF FIRST(D)
e S .
)
Yed e i
- <_FIRST(DESC) = NIL >
No

P = FIRST(DuSC)

FIRST(DESC) = NeXT(P)

INSERT P into ACTIVE 1list
- s

PRIORITY(CURRENT) < PRIORITY(ACTIVE_FIRST)>'
No {, YOA

| swap |
% ”“;?r‘{")

83

6, Exception Handling.

Only the case of exceptions that create internal interrupts
is presented. The I/o option requires modifications in the handlers presented
in the previous section. Thése modifications are only discussed below.

internal interrupt: | GCONTEXT(CURRENT) = REGS 0-5
CONTEXT(CURHENT, 7) = Exception

Address.

Determine Exception Origin.

Select Entry Point from Exception table
denoted by RECOVERY ACTION(CURRENT)
Store Entry Point in RETURN_ADDRESS(CURRENT)

Abor

' < /0 P F"{ RECOVERY_I/O_OPTION(CURRENT) 2 >_ Do No%c&

SCAN device queues and remove all ?ngid*a Return

1/0 descriptors whose owner is Iy&; CURRENT to
CURRENT. Return suspended ACTIVE 1ist
Processes to ACTIVE list,

' - R

f EXCEPTION_STATUS(CURRENT) = Recovering [

RUN

1/0 device Handlers must be modified so that, when the PENDING_I/0_COUNTER

I ——

84

of a Recoverlng process becomes zero, the process 18 returned to the ACTIVE

1ist.

85

synchronization

In any complex system with more than one processor, it is necessary to
synchronize the various processes so that they do not interfere with each
other. The classic examples of such synchronization are a producer-consumer
relation and a race for a resource. There are several well-known solutions
to the synchronization problem. Perhaps the best known are the P's and V's
of Dijkstra. Other solutions include '"message classes'" and Petri nets, One
of the simplest and most elegant is the '"monitor" approach of Hoare. This
method points out, quite reasonably, that if only one processor is "permitted"
to do a thing, then there can't be any races involved. Let us look at these
two classic examples and investigate how they are handled by both PV and by a
monitor.

Consider a producer of messages and a consumer of those messages. Let
there be a set of buffers between them to store messages that have been produced but
not yet consumed. Now clearly the consumer can't take a message from an
empty buffer nor should a producer try to add "just one more" if the buffer
is already full.

We define three semaphores, 'AVAIL" - the number of empty buffers, "FULL" -
the number of full buffers, and "FLAG" - a mutual exclusion semaphore. Ve
assume that P(S) will decrement S by one and continue if S 2 (band put the
executer to sleep on S's queue if S < 0. V(S) will increment S by 1 and if
§ < 0 will wake up the process at the head of S's queue.

The producer executes the following operations:

producer: prepare message.

P (AVAIL)

P (FLAG)

put message in buffer
V(FULL)

V(FLAG)
GOTO produce

86

"nudge" 1its opposite number when {t changes a flag. Notice that we have not
had to appeal to any type of '"non-interruptable operation'" which lies hidden in
the heart of each P and V.

Let us now examine briefly the critical section of a resource allocation
algorithm. We have two or more processes that each have critical sections
(RESOURCE 1, RESOURCE 2, etc.) which would interact detrimentally if they were
allowed to execute concurrently, For example, the critical sections might
involve obtaining a page of core. We bracket each critical section with a P
and a V on some flag, thus allowing only one process to execute at a time within
its critical section:

Process 1 P (FLAG)

RESOURCE 1
V(FLAG)

Process 2 P(FLAG)
RESOURCE 2
V(FLAG)
In this case the action is straightforward and relatively little confusion
is possible, given that we assume that a P and a V are indivisible events.
For most computers this involves an appeal to a non-interruptable instruction
such as "replace add one'" or "test and set'.

To understand Hoare's monitor approach we need to realize that when a CPU
i1s processing an interrupt it is behaving as an independent asynchronous pro-
cessor, possibly racing with the main program for some resource. Fach possible
interrupt level constitutes another such "Pseudo-processor''. loare shows that
if we assign each critical section of code to exactly one processor. or

pseudo~processor, there can be no race conditions. Fach process desiring a

resource sets a flag requesting attention by the resource manager processor,

87

This may be recognized via polling by the manager or via an interrupt which
creates an incorporation of the manager.

The manager, when awakened or "incorporated', examines the requests out-
standing for 1its resource and arbitrates among them. Clearly this scheme will
work if the manager 1s incorporated as the highest possible interrupt level
and runs with interrupt off or if only one of the n different CPUs in a multi-
processor system ever executes the manager code. What Hoare points out is that

it will work equally well with interrupt on (in the main program) provided

only that none of the interrupt routines do any '"messing about'" with the resource.

One might notice that there is very little, if any, differences in essence
between a manager and an expanded "individible operation".

In our system we have chosen to use Hoare's monitor for the operating
system itself, but we have provided P and V service calls for the benefit of

those who do not understand monitors or who are dedicated disciples of Dijkstra.

88

The consumer does the following:
consumer: P(FULL)
P (FLAG)
get message from buffer
V (AVAIL)
V (FLAG)
process message
GOTO consume

The P's and V's on FLAG ensure that either the producer or the consumer
is locked out and only one of them can be changing the buffer at a time. The
producers P(AVAIL) will hang up if there are no buffers available and wait
until the consumer does its V(AVAIL), freeing one up. Similarly, the con-
sumers P(FULL) will cause the consumer to wailt until a buffer has been filled
before proceeding. The arrangement shown is taken from Tsichritzis and
Bernstein and is correct as shown but as a measure of the intuitively non-obvious
nature of these P's and V's answer the following question: "Vill the algorithm
still work properly if we reverse the order of the V(AVAIL) and V(FLAG) in the
consumer?"

NMow let us look at the way a monitor-type approach might handle the
problem of producer consumer. The essence of tlLiis approach is that we avoid
races by having only one contestant. Let there be a circular array of buffers
and let each buifer have a one bit flag associated with it. 1If the flag is
one the buffer contains a message. When the producer has a message ready to
send, it looks for a huffer with a zero flag, writes the message in the buffer,
and then sets the flag to one. Similarly the consumer looks for a full buffer,
reads out the message and then clears the flag to zero. Obviously this will
work and there is no question about the order in which things should happen.

The only thing this description does not provide is for a '"passive wait state"

for the blocked consumer or producer. We can add this by having each process

i o -
- 2 PRS v v

it L ey o RN Pyee § o

e o

ooy

¥.

N

89

Appendix

Although two papers were prepared for publication, neither has been
accepted at this time.

Scientific personnel participating were
Caxton C. Foster
Maureen McCormack (earned MS)
Steven Levitan
Fredric Richard (earned PhD)

